
24

Kateryna Iholkina, Sviatoslav Skhut Komentarze w kodach...

1. COMMENT TYPES

Comments can be used for different purposes in different
parts of the program. They fall into one of three categories:
header comments, block comments and trailing comments,
which describe successively smaller areas of code.

1.1. Header comments.
This class of comments serves to help reader navigate, un-
derstand a general purpose of the code and use the code
itself. This category of comments makes a maintenance

Komentarze w kodach wybranych programów

Comments in the codes of selected programs

Sviatoslav Skhut1, Kateryna Iholkina1,

ABSTRACT: Writing comments is as important as writing code. The main purpose of using comments is to improve
readability of our code but frequently thoughtless comment writing decrease understandability of source code. Com-
ments must be concise and precise simultaneously. Also, when our code is changed, comments for this code must be
changed too. While using comments in our code we must realize that if expressiveness of our programming language
allows us to express clearly what we want in code, there is no need to write comments at all. And if we decide to use
comments, they must be extremely accurate and understandable, because another person must understand, what we do
and most importantly, why we do it.
Frequently comments can be replaced with good clear names of variables, functions or classes. Also, we can replace our
comments with assertions. Comments should clarify and explain our intentions. Copyrights and an authorship can be
implemented using comments too. But our IDE can do these things automatically.
Classification of comments depends on their place in code, for which type of code they are attached and format.

Keywords: source code, software and its engineering, documentation, software management, code comments

INTRODUCTION: Improving code commenting techniques is important for programmers for several reasons: code
maintenance takes about 40-80% of the lifetime cost of a piece of software [1], besides software is rarely maintained by
its original author for its whole life. It's obvious that, the author`s perception of the code is very different from this of the
following developers. Some moments and solutions in the code, self-explanatory for the author, can create a lot of pro-
blems for programmers supporting or refactoring the program. Due to poor documentation and poor-quality comments
it is often even easier to write a new program than to change an old one. Thus, writing a code with useless, unreliable
and inaccurate comments provides to large increase in cost.
Unfortunately, there is no general standards and conventions of writing and formatting code comments. In last twenty
years there was published a lot of books, thesis and blog posts on the topic of programming style, clean code writing and
code documentation. Namely, "The elements of programming style" by Brian W. Kernighan and P. J. Plauger, a study
supporting point of view that source code should be, first of all, human readable. We should also note Robert C. Marti-
n`s book "Clean Code. A Handbook of Agile Software Craftsmanship". A huge part of this study describes patterns and
practices of writing maintainable code and efficient comments. In addition to these books our essay is based on "Java
code conventions" published by Sun Microsystems Inc. in 1997 and "C++ style guide" powered by Google Inc.
The aim of our paper is to treat a problem of code commenting in the source code of selected programs. In the first two
chapters we pay attention on the different code comment`s classification based on their function, placement and for-
mat. In the third chapter we provide an analysis of costs and benefits of using comments. On the examples of different
programs, we consider the best practices of code commenting that should be in each program such as legal comments,
clarifications and TODO comments and explanations of intent. Also, we study examples of useless and sometimes even
dangerous comments, that should never appear in the source code. The last part of this paper is devoted to techniques
that make the code more clear and readable without using comments.

1.Wrocławska Wyższa Szkoła Informatyki Stosowanej „Horyzont”, ul. ks. Marcina Lutra 4, 54 - 239 Wrocław Email: K_Iholkina@gmx.com, sgshkut@gmail.com

25

Kateryna Iholkina, Sviatoslav Skhut Komentarze w kodach...
of code easier. Thus, they should be included in any code
planned to be in use more than a few weeks. The header
comments usually occupy a number of lines (typically be-
tween 10 and 50) [2] and contains following elements:

• Filename
• Source control version history
• Creation date
• Revision history
• Author's name
• Copyright notice
• License summary
• Purpose
• Change history
• Restrictions
• Special hardware requirements (e.g. Analog/Digi-
tal signal converters)

Header comments are placed at the beginning of the pro-
gram which makes them stand out and easier to remove or
copy. The recommended practice is dividing a comment
block onto the section to ameliorate its readability. Using
capital letters for the section headings and tabbing informa-
tion out allows to navigate and read them more quickly:

/*
 ...
 * GLOBAL DATA:
 * int DB_ErrStatus Contains most recent da-
tabase error

1.2. Class comments
If we have a non-obvious class, the comments are requ-
ired. These types of comments should describe what this
class serves for and how it should be used. The class com-
ments should provide such information as: interface of the
class, multiple threads (if any) and if it is possible a few
small examples of code demonstrating its usage. When we
separate implementation and declaration (e.g. .cpp and .h
files), comments that describe use of the class should go
together with declaration, comments that describe class
operation and implementation should be insert into imple-
mentation file.

1.3. Function comments
As with class function, comments should appear when usa-
ge of the function is non-obvious. Comments attached to
function declaration should describe the usage of the func-
tion. They shouldn’t describe how the function performs
its tasks, just tell reader in descriptive way what the func-
tion must do, what inputs and outputs are, in which way
user must free memory (if the function allocates memo-
ry) also function override should be described if it is not
trivial. Comments in function definition should describe
operations. These types of comments describe how func-
tion works.

1.4. Variable comments
The actual name of variable should be enough for descrip-
tion of what it is used for. Comment can be attached if
this variable need additional clarification. In classes we
have data members. Their names must be descriptive eno-
ugh too, and the comments are required if there are some
non-obvious instances. Global variables should have ac-
companying comments that describe why they need to be
global.

1.5. Explanatory comments
Well written and concise code will contain a lot of expla-
natory comments, which highly increase code readabili-
ty and clearness. Even though explanatory comments are
not necessary for each line of code, there are some items
which definitely should have them.
For example, startup code, exit code, weird logic, regular
expressions, sub routines and functions, long and compli-
cated loops [3].
In startup code explanatory comments shoulo to mention
how the program is initialized, what #defines do, what ar-
guments are expected etc.
While writing the exit code explanator comments, we sho-
uld properly treat normal and abnormal exit situations, er-
ror codes etc.
Subrouting and function explanatory comment should, first
of all, clearly explain its tasks and purpose of its using. It
is important to comment functions arguments passed and
returned with mentioning values format and limits on va-
lues expected, as this is one of the biggest sources of bugs
[4]. Thus, this kind of comments written before sub, ro-
utines greatly helps reader to gain a deep understanding of
the following code.

2. COMMENT FORMATS

2.1. Block comments
Block comments are generally found within functions,
methods, data structures and algorithms. Block comments
have two main purposes:
• Commenting out code
• Writing long comments
In C, C++ and Java languages block comments begin with
special separator "/*" and are terminated with "*/", as
shown in the example below. A common used practice is
to start block comments by a blank line to separate them
from the rest of the code.

/* * Here is a block comment. */

The other technic of highlighting block comments is enc-
losing them into a rectangle box of stars and dashes.
The example of boxed comment is:

/***********************
 Comment in a box!!
***********************/

26

Kateryna Iholkina, Sviatoslav Skhut Komentarze w kodach...

The initial "/*" could be followed by other characters such
as "=", "_" or "-".

2.2 Single-line comments.
Single-line comment is a short comment which appears on
a single line intented of the code that follows. As well as
in the case of block comments, there is highly recommen-
ded to separate them from the rest of code by at least one
blank line.
The example of single-line comment in Java code is:

if (condition) {
 /* Handle the condition. */
 ...
}

2.3. Trailing comments
Trailing comments are very short comments, which descri-
be the action or use of a single line of code. They usually
begin (and end) on the same line as the code they describe.
For separating trailing comment from code it is common
practice to tab it out. The comment should be far away
from the code.
For example:

SelectSides(Players); /* choose partners and po-
sitions */

3. PROS AND CONS OF COMMENTING
CODE

3.1. Why comments are not always good.
Comment can be very helpful if they are placed in correct
place in right time. But frequently they just do mess or cla-
rify the code, which we can understand without them. We
need comments for clarification our motives (why we wri-
te our code that way) or even for warning about something.
Nature of comments arises from low expressiveness of our
programming languages. The best comment is the one that
we don’t need at all. That means that we can chose a good
name for variable or function, decide to write an extra line
that make our code more readable and understandable.
Another case is evolving our code. Chunks of it can be
moved in another place or deleted or even rewrited. In this
case we can face outdated misleading comments. Of cour-
se, programmers can maintain these comments, but it takes
a lot of time and it`s better to change a piece of code and
deal with comment only if we really need it in this place.
When we decide to write a comment, at first we need to
think about people who will read it. Secondly we should
do our best with this commenting. Time spending for wri-
ting a good comment will save a lot of time of our code
readers.
Sometimes we can see redundant comments. They do no-
thing except amassing lines in our code. It means that the-

re is no need to comment every single function or variable
we declared. When we see a + b we already know what it
does and there is no need to comment it. Usually this type
of comments just makes it difficult to read the code.
Now we can see that comments are always helpful. There
are a lot of cases when comments are not needed at all or
when they just make code less readable.

3.1.1. Journal comments
Some programmers add a kind of "historical" comments
containing their names, time or date and changes made
every time they edit the code. For example:

// method name: pityTheFoo (included for the sake of
redundancy)
// created: Feb 18, 2009 11:33PM
// Author: Bob
// Revisions: Sue (2/19/2009) - Lengthened monkey's
arms
// Bob (2/20/2009) - Solved drooling issue
 void pityTheFoo() {
 ...
}
There were some reasons to make log comments long,
long ago, when there wasn`t a source control system ma-
king it automatically for us. Nowadays it is more likely to
use one of the source control system and just fill the check-
in comment boxes on our commits [5].

3.1.2. Noise comments
Sometimes comments are obvious and provide no new in-
formation. For example, each string of comments from code
below can be discarded without loss of understandability:

/** The name. */
private String name;
/** The version. */
private String version;
/** The licenceName. */
private String licenceName;
/** The version. */
private String info;
Such code out commenting normally should be used in
two cases: in code examples which serves teaching the
concept of programming language, or in the case when
programming language isn`t easily human readable
(LikeAssembly).

3.2. Good comments
There are cases when we can’t avoid using comments such
as corporal rules or copyright. But we will not consider
them now. A good example of good comment is to do com-
ment. This type of comments can appear near the functions
which will implement in the future (or not). It`s just a list
of tasks that programmers want to do in future. Another
example of good comments are warning comments. This
type of comments warn other programmers about conse-
quences of using code such as vulnerability or time of exe-

27

Kateryna Iholkina, Sviatoslav Skhut Komentarze w kodach...
cution. Comments that describes our intents (why we deci-
ded to solve this problem this way or choose this data type
etc.) or clarify our cod (when we really need it) are exam-
ples of the good comments too.

3.2.1. Legal comments
These comments should not be duplicated of contract or
legal tome. Legal comments can include copyrights, re-
fers to standard licenses, authorship. They also may refer
to external documents. This type of comments should be
included inck at the beginning of source file.

3.2.2. Explanation of intent
This type of comments explains why we have decided to
use this implementation. It allows a developer to under-
stand what is purpose of ou code. Also, it reduces situ-
ations where our intents aren’t clear at a glance.

3.2.3. Clarifications
Sometimes the best way to describe developer explain to
our code is write about it in readable form. For this reason,
clarification comments may be used. This type of com-
ments helps us to describe our obscure functions, returning
values, non-obvious behavior etc.

3.2.4. TO DO comments
It is not a bad idea to include some “to do” lists in our
code. It can be done with this type of comments. They can
be connected to functions or pieces of code that we want to
implement in future. Todo comments show developers that
this function does nothing except reminding.

3.3. Alternative comments
 As we mentioned above the one of the worst practice is
out commenting code. Obvious, annoying, trashy, redun-
dant comments lead to incomprehensible hard to mainta-
in code. Having considered what comments' strengths and
weaknesses are, we will treat how they could be replaced
by other tools.

3.3.1. Identifiers as comments
Consider the example demonstrating how a typical com-
ment can be encoded in an identifier:

Before:
 ++i;/* record another match of this expression */
After:
 ++number_of_expression_matches;

Huge part of source codes comments could be replaced
by carefully and thoughtfully named variables, functions,
methods and classes names. If a comment is intended to
explain a complex expression, the expression should be
split into understandable subexpressions using extract va-
riable. If a comment explains a section of code, this section
can be turned into a separate method via extract method.
However, identifiers could be completely misleading, if
the programmer isn`t attentive when modifying code. This

is the same problem which appears also when comments
aren`t updated respectively to code, modifications. So,
when we refactor code, we should be vigilant to change
both comments and identifiers.

3.3.2. Replacement comments with assertions
From time to time it is reasonable to refactor a comment
into an assertion. For example:

Before:
// value must not be negative
 public double squareRootOf(int value) {
...square root algorithm...
}
After:
public double squareRootOf(int value) {
Assert.isTrue(value >= 0);
 ...square root algorithm...
}

The benefits of this solutions are: supporting better testing,
making debugging easier, serving as understandable com-
ment about preconditions [6]. However, assertions slow
down our code and may make a program incorrect when
they are used improperly. So, assertions have some ad-
vantages as they are enforced as code and form program-
mable safeguards, but then also have all the disadvantages
of code: expression of abstraction can be verbose and non-
trivial

4. DOCUMETING SYSTEMS

There are several documenting systems available for va-
rious programming languages. These systems deal with
the „Explanatory” type of comment. They create docu-
mentation out of comments from the code. Let’s demon-
strate these systems via Javadoc. This is the Java API con-
tained in the JDK. It uses comments with specific tag /**
to generate HTML pages with descriptions of all classes,
interfaces, constructors etc. It also generates a tree with
class hierarchy. For more details we can use documenta-
tion provided with JDK. PHP and C# also have documen-
tation system, but the latter uses XML instead of HTML.
These systems require from developers to maintain not
only the code, but comments too.

CONCLUSIONS

When reading tricky code, there is nothing more help-
ful than well-written comment. At the same time, there is
often nothing harder than writing a well-placed, brief and
clear comment.
On the one hand, plain English is always easier to read than
code. Comments can explain things that couldn`t be easy
expressed in programming language, besides, they don`t
affect program execution speed. Writing good comments

28

Kateryna Iholkina, Sviatoslav Skhut Komentarze w kodach...
discipline programmer`s mind. Comments are shorter than
the code they document and much easier to skim-read.
On the other hand, they reduce the readability of well-
written code, in addition they are less precise that the code
they document. Sometimes using a lot of comments enco-
urage bad code, take up screen space and time to read. By
the way, programmers often refactor code, but don`t upda-
te comments, which provides to a high risk of spending
hours tacking up a bug, because you trusted a non-reliable
comment.
Thus, programmers should use comments carefully, for
preference when it is impossible to make a code self-
explanatory. Before writing a comment, it is recommended
practice to try to increase code expressiveness by introdu-
ce an explaining variable, extract a method, use more de-
scriptive identifier, or replace a comment with assertion.
The questions "To write or not to write?", "How many?",
"How detailed comments to write?" is still hotly debated
one.

SOURCES

[1] Sun Microsystems Inc, Java code conventions, 1997
[2] David Straker, C Style: Standards and Guidelines,
1991
[3] Bernhard Spuida, The fine Art of Commenting, 2002,
Tech Notes, general Series
[4] Brian W. Kernighan, P. J. Plauger, The elements of pro-
gramming style, 1978, McGraw-Hill Book Company,
[5] Robert C. Martin, Clean Code. A Handbook of Agile
Software Craftsmanship, 2009, Prentice Hall,
[6] Dori Reuveni, Kevin Bourrillion, Code Health: to com-
ment or not to comment, 2017, blog post

