
7

Swietłana Lebiediewa Dekompozycja ciągu uczącego

1. The problem formulated

Recognition algorithms with learning use the training se-
quence (TS) [1, 3, 4]. The training sequence is a sequence
of properly classified patterns, the elements of the TS be-
ing (xk,k) pairs, where x is the vector of the values of the
features of the pattern, and k is the class number [1, 2, 4,
5]. An example is the decision tree (DT) in Figure 1 and
the corresponding TS in Figure 2.

Figure 1. Decision tree No. 1a.

The training sequence presented in Figure 2 has the sym-
bol * at the place of some features. This symbol means
that a given feature is irrelevant to the pattern being reco-
gnized and not taken into account by the recognition algo-
rithm. The multistage recognition process uses only some
elements of the pattern feature vector at various recogni-

tion stages. For instance, recognition algorithms only use
features C1, C2, C4, and C5 at node 0, and features C3,
C4, and C8 at node 14. Additionally, certain features do
not occur on each path at all.

C1 C2 C3 C4 C5 C6 C7 C8 C9 CLASS
16 3.44 3 6.55 40.0 48 116 * 14.9 7
15 3.45 2 8.45 40.0 * * 120 * 1
14 2.4 1 8.33 38.1 * 110 * * 2
18 3.0 * 7.5 35.0 40 * * 15.0 4
15 2.7 * 6.0 20.0 35 110 112 * 8

Figure 2. A fragment of the training sequence for DT No. 1a.

Let us use the following designations: CN – the number
of elements of feature vector Cn (n=1, 2, ..., CN); K – the
number of classes; ENk – the number of TS elements for
class k; UCNk – the number of features irrelevant to class
k (features not used in the process of recognizing a pattern
belonging to class k). The number of unused memory units
is expressed by the following formula:

 (1)

For the decision tree in Figure 1, the number of all features
CN = 9, the number of all classes K = 11. Assume that the
TS element number is the same for every class, e.g. 100;
then, under formula (1), the memory waste is 1900 units,
i.e. more than 19%. The memory waste is the greater, the
fewer features are used by the recognition algorithm on
the path from the root of the decision tree to the non-ter-
minal node that is the direct predecessor of the class. E.g.,
for tree No. 1b (Fig. 3), the memory waste under the same
assumptions is over 54.11%.

Training sequence decomposition

Dekompozycja ciągu uczącego

Swietłana Lebiediewa1

Treść: Sformułowano problem dekompozycji ciągu uczącego (CU). Zdefiniowano dwa rodzaje dekompozycji CU dla
scentralizowanej bazy danych (SBD). Udowodniono twierdzenia dotyczące zajętości pamięci przez CU po dekompozy-
cji. Oszacowano złożoność obliczeniową algorytmów dekompozycji. Przedstawiono wyniki eksperymentu obliczenio-
wego ilustrującego zajętość pamięci w zależności od rodzaju dekompozycji, redundancji cech w drzewie i na ścieżce
oraz wysokości drzewa.

Słowa kluczowe: baza danych, rozpoznawanie wieloetapowe, ciąg uczący, dekompozycja

Abstract: The problem of decomposition of a training sequence (TS) is formulated. Two types of TS decomposition
for a centralized database are formulated. Theorems concerning memory occupancy by the TS after decomposition are
proved. The calculation complexity of decomposition algorithms is estimated. The results of a calculation experiment
are presented that illustrate memory occupancy depending on the decomposition type, the redundancy of features in the
tree, the path, and the tree height.

Keywords: database, multistage recognition, training sequence, decomposition

1. Faculty of Computer Science, Wroclaw School of Information Technology, ul. Wejherowska 28,54-239 Wrocław, Poland, swietlana@lebiediewa.com

8

Swietłana Lebiediewa Dekompozycja ciągu uczącego

Figure 3. Decision tree No. 1b.

To conserve memory, it is proposed that the TS be decom-
posed. For a centralized database (CDB), I propose two ty-
pes of decomposition : decomposition of the first type and
decomposition of the second type. In decomposition of the
first type, for every node that is the direct predecessor of
a terminal node, a TS subsequence is formed that includes
the values of only those features that are used along the
entire path from the root of the decision tree (DT) to the
node concerned until the decision is made to classify the
pattern as a member of the class available directly from the
node. In decomposition of the second type, for every non-
terminal node, a training sequence subsequence is formed
that includes the values of only those features that are used
in the node.
It can be seen from the recognition algorithms presented in
[5, 6] that the time of RA work at each node consists of the
time needed to create the data segment and the RA work
time. An appropriate form of the TS may shorten the time
needed to create a data segment. The purpose of decompo-
sition is to split the TS into subsequences that
 1. minimize memory occupancy by the TS;
 2. minimize the time needed for pattern recognition.

2. TS decomposition for a centralized database

Decomposition algorithms use information about the TS
and the structure of the DT included in the SEQUENCE,
CLASS, NODE, and FEATURE relations of the DB con-
ceptual model. The SEQUENCE relation contains infor-
mation about the TS. The CLASS relation describes the
dependency between the class number and the number of
the node that is the direct predecessor of the class. For eve-
ry class, its predecessor is indicated. The NODE relation
contains information about the number of every node, its
direct successors and predecessors. The FEATURE rela-
tion contains information about which nodes use each fe-
ature [5, 6].

ALGORITHM 1. (decomposition algorithm 1 of the TS
type)
Data: REC DB conceptual model – SEQUEN-
 CE and CLASS relations
To be found: For every node that is the direct

 predecessor of a terminal node, form a TS

subse quence that includes the values of
only those features that are used along the
 path from the root of the decision tree to
 the node concerned until the decision is
 made.

STEP 1. Take the numbers of nodes that are the di
 rect predecessors of the terminal nodes
 from the CLASS relation.
STEP 2. Create a training subsequence for
 every such node: take rows from the TS
 for which CLASS NO = “class reachable
 directly from the node”,placing theresult
 in the R relation;
STEP 3. Map the R relation to attributes, the num-
 bers of features used on the path from the
 root to the node and the CLASS NO).
 STOP

Memory occupancy by a subsequence connected with
node i is expressed by the following formula:

 (2)

We will designate memory occupancy by all subsequences
of the training sequence obtained as a result of ALGORI-
THM 1 as MOD1. Memory occupancy by these subsequ-
ences as expressed by formula (3): where where J - the
number of nodes that are direct predecessors classes:

 (3)

Decomposition of the first type leads to the most optimal
form of the TS in terms of memory occupancy; every TS
reduction obtained as a result of decomposition of the first
type would lead to a loss of information. What may hap-
pen, however, is that the time needed to form a TS frag-
ment used in a certain segment (FRAGSEQ*) from the
TS obtained as a result of the decomposition of the first
type can be longer than the time needed to form a FRAG-
SEQ* relation from an undecomposed TS. The time is lon-
ger as a result of the need to perform a larger number of
operations.
 In decomposition of the second type, for every
non-terminal node, a training sequence subsequence is for-
med that includes the values of only those features that are
used in the node.

ALGORITHM 2. (decomposition algorithm 2 of the TS
type for the CDB)
Data: DB conceptual model – SEQUENCE,
 NODE, and FEATURE relations
To be found: For every non-terminal node, form a
 training sequence subsequence that

9

Swietłana Lebiediewa Dekompozycja ciągu uczącego

 includes the values of only those features
 that are used in the node.

STEP 1. Add a column containing TS element
 identifiers to the SEQUENCE relation
 storing the TS.
STEP 2. Take the numbers of all non-terminal
 nodes from the NODE relation.
STEP 3. For every non-terminal node, form a
 training subsequence (take those row
 from the TS for which CLASS NO = “
 call reachable from a given node”;
 remove those attributes from the obtained
 relation that contain feature values
 unused in the node).
 STOP

Let n be the number of rows of the TS. The TS memory
complexity is given by the formula ()2nO .
Denote the number of all non-terminal nodes of the DT as
N; the number of features used by the recognition algori-
thm at node j as Cj; the number of classes reachable from
node j as Kj; the number of TS elements for class k as ENk;
and memory occupancy by the training sequence obtained
as a result of decomposition of the second type as MOD2.
Then, the formula for FRAGSEQ* TS memory occupancy
at node j (on the assumption that each sequence contains
an additional column for the value of the training sequence
element identifier) has the following form:

 (4)

The formula for memory occupancy by all TSs obtained as
a result of decomposition of the second type is as follows:

 (5)

The following conclusions follow from the memory occu-
pancy formulas:
Conclusion 1. Memory occupancy by TSs arising from
decomposition of the first type is unaffected by the redun-
dancy of features on the path from the tree root to the class
or by the length of the path. It only depends on the number
of features on the path.
Conclusion 2. MOD2 is unaffected by the length of the
DT feature vector. It only depends on the number of featu-
res used at each node and on the number of classes reacha-
ble from that node.
Conclusion 3. MOD2 depends both on the redundancy of
features on the path from the root to the class or on the
length of the path.
We denote by TMO total memory contents for the TS, and
by UCN - number of characteristics unused (irrelevant) in
the process of recognition.
Theorem 1. Memory occupancy by TSs obtained as a re-

sult of decomposition of the first type is no greater than
memory occupancy by the TSs before the decomposition,
so the following dependency occurs:
 MOD1 ≤ TMO
 (the inequality is sharp if UCN ≠ 0)
Theorem 2. Memory occupancy by TSs obtained as a re-
sult of decomposition of the first type is always smaller
than memory occupancy by the TSs obtained as a result of
decomposition of the second type, so the following depen-
dency occurs:
 MOD1 < MOD2

3. Calculation experiment

A calculation experiment was carried out examining me-
mory occupancy of TSs obtained as a result of decompo-
sition of the first and of the second type for various trees,
depending on the number of features in the tree and on the
path, the height of the tree, and earlier-stage recognition.
The following trees were considered: No. 4a (Fig. 4a), No.
4b (Fig. 4b), and No. 4c (Fig. 4c). The number of features:
20; the number of classes: 10; tree height: 3; feature use on
the path: 47%; TS size before decomposition: 21000. Tree
No. 4a has no redundancy of features on the path. Tree No.
4b has the redundancy of two features at nodes on different
paths. Tree No. 4c has the redundancy of three features at
nodes on different paths. Memory occupancy by TSs ob-
tained as a result of decomposition of the first type and the
memory savings after decomposition are presented in Ta-
ble 4.4a. Memory occupancy by TSs obtained as a result of
decomposition of the second type and the memory savings
after decomposition are presented in Table 4.4b. A chart
showing the TS memory savings after decomposition of
first and the second type for trees No. 4a–4c is presented in
Figure 5. Memory occupancy by TSs obtained as a result
of decomposition of the first type and the memory savings
after decomposition are presented in Table 4.5 a. Memory
occupancy by TSs obtained as a result of decomposition of
the second type and the memory savings after decomposi-
tion are presented in Table 4.5b. A chart showing the TS
memory savings after decomposition of first and the se-
cond type for trees No. 5a–5c is presented in Figure 4.16.

Figure 4a. Decision tree No. 4a.

10

Swietłana Lebiediewa Dekompozycja ciągu uczącego

Figure 4b. Decision tree No. 4b.

Figure 4c. Decision tree No. 4c.

Table 4.4a. Memory occupancy by TSs obtained as a result of decom-
position of the first type (CDB).

TREE NO. Tree No. 4a Tree No. 4b Tree No. 4c
MEMORY
SAVINGS

50% 50% 50%

Table 4.4b. Memory occupancy by TSs obtained as a result of decom-
position of the second type (CDB).

TREE NO. Tree No. 4a Tree No. 4b Tree No. 4c
MEMORY
SAVINGS

26.19% 7.14% (2.38%)

Figure 4.5. A chart showing the TS memory savings after decomposi-
tion of first and the second type for trees No. 4a–4c.

Decomposition of the first type always results in memory
savings, especially where the number of all features in a
DT is much greater than the number of features used on
any path (cf. tree No. 1c in Figure 3). Decomposition of

the second type is not always favourable in terms of me-
mory occupancy. Decomposition of the second type gives
the best results if there is no redundancy of features on any
path. The smaller the percentage of feature use on a path,
the greater the memory savings upon decomposition both
of the first and of the second type.
A smaller percentage of feature use on a path improves the
results of decomposition both of the first and of the second
type. Even in the case of the redundancy of four features
on a path, there are no memory wastes. The result is even
better where some of the patterns are recognized in the
first stage.
We observe clear memory savings for decomposition of
first type. For decomposition of the second type, memory
savings occur if there is no redundancy. In the case of the
redundancy of four features on a path, TSs obtained as a
result of decomposition of the second type require more
memory than undecomposed TSs. If some patterns are re-
cognized at the first level, there are clear memory savings
for decomposition of both the first type and the second
type even in the case of the redundancy of features on a
path. A binary tree is a good example indicating a tenden-
cy for memory occupancy to be reduced in the case of a
decomposed TS. Memory savings for two-, four-, six-, and
eight-level binary trees are shown in Figure 4.

Figure 4. A chart showing the TS memory savings (percentage) after
decomposition of the first type and the second type for two-, four-,

six-, and eight-level binary trees.

4. Conclusions

The examples cited show that the greatest memory saving
effect results from the use of decomposition of the first
type in the case of a CDB because decomposition of the
first type is not sensitive to feature redundancies on a path
or to path lengths. Particularly good results are obtained in
the case of a smaller number of features on a path relati-
ve to the number of features in the DT. Decomposition of
the second type does not always result in memory savings.
Decomposition of the second type requires more memory
than decomposition of the first type. The best results are
given by decomposition of the second type in the case of
no feature redundancy and ‘longer’ trees. For both decom-
positions, the recognition of a certain number of classes

11

Swietłana Lebiediewa Dekompozycja ciągu uczącego

at earlier stages has a positive effect on memory savings.
With large numbers of features and ‘long’ trees, both de-
compositions have a very large effect on memory savings.
Training sequences obtained as a result of decomposition
of the second type have the additional advantage that they
are identical with fragments of TSs used by recognition
algorithms at the node, so if decomposition of the second
type is used, it is unnecessary to create special FRAGSE-
Qi relations (i being the node number) when creating an
external model, which means a considerably shorter pro-
cessing time.

References

[1] Bubnicki, Z. ‘Knowledge-Based Approach as a Gene-
ralization of Pattern Recognition Problems and Methods’.
Systems Science Vol. 19, No 2 (1993), pp. 5–21.
[2] Fłasiński, M. Wstęp do sztucznej inteligencji. Warsaw:
PWN, 2011.
[3] Kurzyński, M. Algorytmy rozpoznawania wieloetapo-
wego oraz ich zastosowania medyczne i techniczne. Wro-
cław: Wyd. PWr., 1987.
[4] Józefczyk, J. ‘Rozpoznawanie i zastosowania biome-
dyczne’ [in:] Problemy automatyki i informatyki, Wro-
cław: Wyd. Ossolineum, (1998), pp. 45–58.
[5] Lebiediewa, S, ‘System informatyczny dla wieloetapo-
wego rozpoznawania obiektów’. Biuletyn Naukowy WWIS.
Informatyka, 2014.
[6] Lebiediewa, S. Metodologia projektowania problemo-
wo zorientowanych baz danych do systemów wielostopnio-
wego podejmowania decyzji. Wrocław: Wyd. Pwr., 1998.
[7] Lebiediewa, S., Zarzycki, H., and Dobrosielski, W. T.
‘A new approach to the equivalence of relational and ob-
ject-oriented databases’, [in] Novel Developments in Un-
certainty Representation and Processing, Springer Interna-
tional Publishing (2016), pp 85-93.

