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Algorytm aproksymacyjny w oparciu o informacje Kullbacka-Leiblera w pewnej klasie systemow

dynamicznych

Jan Owedyk', Zdzistaw Mathia’, Hubert Zarzycki®

Tre$é: W pracy przedstawiono algorytm, ktory umozliwia skonstruowanie przyblizonych rozwiazan dla pewnej klasy
systemow dynamiczych opisujacych ewolucje w czasie gestosci prawdopodobienstwa. Przyblizone rozwiazania otrzy-
mujemy minimalizujac informacj¢ Kullbacka-Leiblera przy dodatkowych warunkach.

Wykazano, ze pochodna informacji Kullbacka-Leiblera dla doktadnych i przyblizonych rozwiazan jest opisana przez ta
sama formutg. W konsekwencji gdy w dynamicznym systemie maleje informacja Kullbacka-Leiblera dla doktadnych
rozwiazan to takze maleje dla przyblizonych rozwigzan.

Stowa kluczowe: Algorytm aproksymacyjny, Informacja Kullbacka-Leiblera, Metoda minimalizacji, Réwnania
Fokkera-Plancka

Abstract: In this work an algorithm is presented for creating approximate solutions in some class of dynamical systems
describing the time evolution probability densities. The approximate solutions are obtained by minimizing Kullback-
Leibler divergence under some constrains.

It is shown that the derivatives of the Kullback-Leibler divergence for exact solutions and for approximate solutions are
described by the same formula. In consequence if in a dynamical system the Kullback-Leibler divergence decreases in
time for exact solutions, it also decreases for approximate solutions.
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1. INTRODUCTION under some constrains. The functions 4(2), i=0,1,...,N are

the Lagrange multipliers and their time evolution is deter-
mined by some system of ordinary differential equations

In the early eighties of the last century the Kullback-
Leibler divergence was used to obtain approximate solu-
tions in dynamical systems represented by n-dimentional
Fokker-Planck equation [4] also with time dependent drift
and diffusion coefficients [6] and in systems represented
by master equations [5,7].

In this paper this approach is generalised for some dyna-
mical systems in that the Kullback-Leibler information di-
vergence K(PP) = [P In(P/P) dx > 0, [2,3] satisfies ine-
quality dK/dt < 0 for any two probability density functions
P= P(x,t), P,= P (x,t) of continuous random variable de-
fined on x = (xj, e X n) which describe time evolution in
the system. We have formulated a criterion on choosing
such a dynamical system which will be called the Kullbac-
k-Leibler system.

In the dynamical system an approximate solution as an
exponential probability density is postulated

P*=P,exp(— (1) - % A0 f)

obtained by minimizing the Kullback-Leibler divergence

and f[ = fl.(x), i =1,...,N are some lineary independent
functions. The probability density P, = P (x,?) is a fixed
exact solution of the Kullback-Leibler system.

This paper is organised as follows. In section 2 a defini-
tion of the Kullback-Leibler system is formulated and the
stability of exact solutions in this system is investigated.
In section 3 the approximate solution is obtained for the
Kullback-Leibler system by minimizing Kullback-Leibler
divergence under some conditions. In section 4 the stabili-
ty of the approximate solutions is investigated. In section 5
the accompanied differential evolution equations for A (2), i
= [,...,N are derived and investigated. Two important pro-
perties of solutions to this accompanied differential evolu-
tion equations are formulated. An optimization algorithm
supported on minimizing the Kullback-Leibler divergence
in the Kullback-Leibler systems is also formulated.
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II. Tue KuLLBACK-LEIBLER SYSTEMS

We take for our considerations some dynamical systems
describing by the equation

opP/ot =S, P, (2.1)
where P = P(x,?) is the time dependent probability density
function of the continuous random variable defined on x =
(x], v x) E" ( E" is the n-dimensional Euclidean space),
S, is a tin € dependent system operator. In the case of the
Fokker-Planck equation, S, is given by equation (A.2) (see
appendix).

For ensuring the normalization condition fP(x, 1) dx =1 it
must be satisfied

[SPdx=0
(2.2)
for any probability density function P(x,?).
We use the Kullback-Leibler divergence [2,3]
K(PP) =|Pin(P/P) dx>0
(2.3)

as “a measure of distance” between any two solutions P =
P(x,t), P,= P (x,t) of equation (2.1).
In order to investigate time dependence of Kullback-
Leibler divergence we calculate its time derivative
dK/dt = | ((OP/ dy)In(P/P,) + Po(In(P/P ))/0t)dx =
[ ((0P/oY)In(P/P,) + (0P/0t) — (OP /01)(P/P,))dx =
[((S, P)in(P/P,) = (S, P )(P/P,))dx.

(2.4)
Above we have used normalisation to the unity i.e. [ P dx
= [ and equations 0 P/0Ot =S, P 0P, /0t=S,P,
(P and P satisfy (2.1) ).
We will restrict ourselves to the system operator S, so that
the last formula in (2.4) is negative for any Pand P, i.e.
[((S, P)In(P/P,) = (S P )(P/P))dx < 0, (=0 only if
P=P,).

(2.5)

The system described by the system operator S, which sa-
tisfies inequality (2.5) will be called Kullback-Leibler sys-
tem and the system operator S, will be called Kullbac-
k-Leibler system operator. It is shown in Appendix that
systems described by the Fokker-Planck equation are the
Kullback-Leibler systems. From now we will consider
only Kullback-Leibler systems and Kullback-Leibler sys-
tem operators S,
According to the inequality (2.5) it follows that
dK/dt< 0, (=Oonlyif P=P).

(2.6)
The inequality (2.6) may be treated as a generalised H-
theorem [6]. We can see that the inequality (2.5) is a crite-
rion of choosing dynamical systems in which the generali-
sed H-theorem is satisfied.
Using the above inequality one can investigate an asymp-
totic behaviour of solutions of the equation (2.1). Because
the Kullback-Leibler divergence K(PP,) ( see (2.3))is
bounded from below and (2.6) is satisfied, one can write
lim dK/dt = 0.

t —o

If additionally from (2.7) and (2.5) it follows that

lim (P(x,t)/P (x,t)) = 1, for every x,

t —0

(2.8)

then because the probability densities are normed to the
unity, the difference between two arbitrary solutions P =
P(x,1), P,= P (x,t) of equation (2.1) vanishes as time goes
to infinity, i.e.

lim (P(x,t) — P (x,t)) = 0, for every x.

t —0

(2.9)

III. Tue MinivizING KULLBACK-LEIBLER
DIVERGENCE SOLUTIONS

Let P (x,t) be some fixed solution of equation (2.1). An ar-
bitrary solution P(x,f) of the equation (2.1) may be writ-
ten in the form
P = P(x,t) = P (x,1) exp(— F(x,1)),
(3.1)

where F' = F( x,t) is some function.

From (3.1) and (2.1) we obtain
oP/ot = (0P, /0t) exp(— F)—(OF/0t) P exp(—F)

(3.2)
and
(OF/0y) P=(S,P,) exp(—F)— S P

(3.3)
From (3.3) and (3.1) we have
(OF/oy) = (S, P,)/P, — (S, P)/P

3.4)

and
(OF/0t) = (S, P,)/P, — (S, (P, exp(—F))) /(P exp(—
F)).

(3.5
Equation (3.5) determines time evolution of the function
F=F(x1).
We assume that the datas of the system are represented by
mean values
<>, =[f(x) Pxt)ydx, i=1,.,N

(3.6)
of N linearly independent ( together with f, = f/(x) = I )
functions f = f(x), i = I,....N. According to the (3.6),
(2.1) and (3.1) the evolution equations for the mean valu-
es are in
the following form
d<f>/dt =f oP/otdx =]fS Pdx=|fS (P,exp
(—F))dx, i=1,.., N,

(3.7)

finally

d<f>/dt=[fS (P,exp(—F))dx, i=1,.., N.
(3.8)

Using (3.3) and (3.1) we obtain useful formulas
<f,0F/or> = f, 0F /ot P dx =, (S, P,) exp( — F) dx
— [fS (P,exp(—F)) dx,i=0,1,..,N.

(3.9)
For i = 0 we remember that f, = f/(x) = I then from (3.9)
we have
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<oF/or>, = [ (S,P)exp(— F) dx— [ S, (P exp
(—F)) dx.

(3.10)
From (3.1), (2.1) and normalization condition [ P(x,7) dx
= [ we have
IS (P,exp(—F))dx =18 Pdx=[0P/otdx =
d( | Pdx)/dt = 0,

(3.11)
then
<oF/or>, = [ (S,P,) exp(— F) dx.
(3.12)
In general the evolution equations (3.8) are not closed with
respect to the mean values <f> P=f S(x)P(x,t) dx of func-
tions f[ = fl,(x), i=1,...,N. In order to close and solve the
system of evolution equations (3.8) we use the approxi-
mate exponential probability density P*(x,¢) instead of the
exact solution P(x,?) i.e.
P(x,t) =P (x.1) exp(— F'(x.1)),

(3.13)

where

F () =00 + X 4075

(3.14)
where li(t), i=0,1,.., N are Lagrange multipliers.
The approximate exponential probability density P*(x,?)
is obtained by minimizing Kullback-Leibler information
divergence

K(P(x,0),P,(x,1)) = [ P(x,0) In(P(x,0)/P,(x,))dx > 0

(3.15)
under the constraints
[ P(x,0) dx = 1,

(3.16)
and
[f(x) Pxtydx =<f>,, i=1,..,N.

(3.17)

The method for solving this constrained optimization pro-
blem is to use the Lagrange

multipliers for each of the constraints and minimize the
functional

J= IPIn(P/P)dx + Y A(0(1 [P dx—<f>,)
(3.18)

with respect to P Minimizing the functional (3.18) with re-
spect to P leads to the calculation of the derivative of

L=PIn(P/P) +3 4,(1) /;P

(3.19)
with respect to P and setting it to the zero i.e.
N
OL/OP = In(P/P) + 1+ 3% A(1) f, = 0.
i=0
(3.20)

From (3.20) one obtains the probability density P, which

minimizes the functional (3.18)
N

Pmin - PO exp(_ (] +j‘0(t)) o z A,(Uf,)
i=1

(3.21)
After replacing 1+4(?) by 4,(1), one obtains from (3.21)
the approximate exponential probability density P*(x,?)
ie.

P'=Pep(~ i)~ 101

(3.22)
The approximate exponential probability density P(x,t)
will be called the minimizing Kullback-Leibler divergen-
ce solution or short the Kullback-Leibler solution.
Inserting in (3.8) the Kullback-Leibler solution P’(x,¢) in-
stead of P(x,t) we obtain
d<f>,/dt =11 S (P,exp(—F")) dx, i=1,..N,

(3.23)
where
<S> = j]:(x) P(xt)dx, i=1,..N.

(3.24)
Eqations (3.23) determine approximate Kullback-Leibler
solutions P*(x,?).
In (3.23) we asume that P(x,z) and P"(x,t) have the same
mean values <f>, and <f>,, for initial time. From (3.24)
we may calculate /ll,(t), i=1,...,N as functions of the mean
values <f>,., i= 1,...,.N and 4 (?) is a function of A(?), i
=],....N calculated from the normalization condition
[P*(x,f) dx =1, then eqations (3.23) constitute a closed sys-
tem of non autonomous ordinary differential equations for
<fl,>1w i=1,...N. Let us notice that (3.23) together
with (3.13), (3.14) and (3.24) determine the differential
evolution equations for li(t), i =1,...,N further called the
accompanied evolution equations.
Now we present formulas satisfied by the Kullbac-
k-Leibler solution P*(x,z) which will be useful in further
considerations.

The first. From (2.2) it follows that
IS P dx =0.

(3.25)
The second. From (3.24), (3.13) and (2.1) one gets
d<f>,/dt = | f (0P /ot)exp(— F’) dx | f P exp
(— F")(OF"/ot) dx = Ifl (S,P,) exp(— F")dx —j]jf
P*(OF/0t) dx, i = 1,..., N.

(3.26)
From (3.26) and (3.23) we finally have
<foF/or= .= (S, P)exp(—F') dx— [ f S, (P,
exp(—F'))dx,i=1,..., N.

(3.27)

The third. From ( 3.27) it follows that

<OF"/or> = | 0F /ot P" dx = (S, P,) exp(— F") dx.
(3.28)

One can notice that formulas (3.25), (3.27), (3.28) which
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are satisfied for the Kullback-Leibler solution P*(x, ¢) are
also fulfiled for exact solution P(x, #) see (2.2), (3.9),
(3.12).

IV. StaBiLiTY OF THE KULLBACK-LEIBLER SOLUTIONS

We will investigate whether for the Kullback-Leibler so-

lutions P*(x, ¢) like for the exact solutions P(x, f), the

generalised H-theorem (2.6) and property (2.9), i.e.

lim(P*(x,t)—P (x,1)) =0 are satisfied.

For our consideration we take the Kulback-Leibler diver-

gence in the following form

K(P(x,0),P,(x,1)) = | P"(x,0) In(P"(x,t)/P (x,1)) dx > 0.
4.1

We calculate its time derivative. According to the(: (3?13),

(3.14), (3.28), (3.23), (3.25) one obtains

dK/dt = | ((8P*/61)ln(P*/P0) + P*aln(P*/PO)/Ot)dx =

— [ (eP*/ot) F* dx — | P*(0F"/0t)dx =

[ @P"/ 0 (3,0 + 3. Lf (0)dx — <OF /or>,, =

N
-2 AMd<f>,/dt) — <6F*/at>p* =
i=1

- ﬁ AW S (P,exp(—F)dx—[(S P)exp(—F’)
dx=—]F S P dx—](SP)exp(—F)dx=
[ (S P In(P*/P) dx—] (S, P)(P/P)dx =[((S P’

ln(P*/PO) - P) (P*/Po)) dx.

(4.2)
The above formula (4.2) for approximate solutions P*(x,?)
which do not satisfy equation (2.1) is the same as the for-
mula (2.4) obtained exact solutions P(x,f) of equation
(2.1).
According to the (2.5) the last formula in (4.2) fulfills the
following inequality
[ (¢S, P*) In(P*/P)— (S, P) (P"/P)) dx <0, (=0
only if P*=P,).

(4.3)
Then from (4.2) and (4.3) it follows that
dK/dt <0, (=Oonlyif P"=P).

(4.4)

The inequality (4.4) is a generalised H-theorem for the
Kullback-Leibler solutions P*(x,?).

Using the inequality (4.4) one can investigate an asymp-
totic behaviour of the Kullback-Leibler solutions P*(x,1).
Because the Kullback-Leibler information divergence
K(P",P,) is bounded from below and (4.4) is fulfilled, one
can write

lim dK/dt = 0.

t —0

(4.5)

From (4.2), (4.3) and (4.5) it follows
lim(P*(x,t)/Po(x,t)) =1
t —w

(4.6)
Because the probability densities are normed to the unity,
then according to (4.6) it follows that the difference be-
tween the two probability densities P* = P(x,¢) and P, =
P (x,t) vanishes as time goes to infinity, i.e
lim (P"(x,t) — P,x,1) = 0.
t —w

4.7)
Additionally from (4.6) and (3.13)
lim F*(x,t) = 0.
t —w

(4.8)
The above considerations are done under the assumption
that the Kullback-Leibler solutions P*(x,?) exist for any
time ¢ > ¢, (¢, is an initial time).
Remark: It is an important result for the Kullback-Leibler
divergence in this paper, that from (4.2) we have dK/dr=]((S )
P’)In(P"/P,)—(S, P) (P"/P,))dx and from (2.4) dK/dt:j((Sl
P)In(P/P)—(S, P )(P/P,))dx. We can see that the time de-
rivative of Kullback- Leibler divergence for approximate
solutions P*(x, t) and for exact solutions P = P(x,t) are de-
scribed by the same formula. According to the above, we
can conclude that the derivative of the Kullback-Leibler
divergence for approximate solutions and the derivative of
the Kullback-Leibler divergence for exact solutons, fulfill
the same inequalities (4.4) and (2.6). In consequence the
approximate solutions P*(x, ¢) have the same asymptotic
behaviour as the exact solutions P = P(x,1).

V. Tue Accompaniep EvoLution EQuaTtions aND THE
OPTIMIZATION ALGORITHM

In order to derive the accompanied differential evolution
equations for A(?), i = 1,...,N we start from the equations
(3.27) i.e.

<f,oF'/or> .= [f.(S,P)exp(—F) dx— |5, (P,exp
(—F))dx, i=1,..,N.

(5.1)
Using (3.14) on the left side of (5.1) one obtains

N
S OF 00>, = <f, (A fdt + 3. (&3 fd)f)>,.= di
=

N
<fZpt X (dA/d) <ff>,.,
=1

i=1,...,N.

(5.2)
For further calculations we use formula (3.28) i.e.
<oF/or>,. = [ (S,P)exp(— F") dx.

(5.3)

Using (3.14) on the left side of (5.3) one obtains
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p**

N
<OF/0r>,, = dA/dt+ ). (dA/dy) <[>
J=1

(5.4)
From (5.3) and (5.4) we have

didt =1 (S,P)exp(~F) dx — . (di/dt) <f>

J=1

p*

(5.5)
Inserting in (5.2) instead of d/ /dt, the formula (5.5) we
obtain

N
<f OF /or>,, = <f>,.1 (S P,) exp(— F)dx — > (@)
J=

N
d)<f>p. <f>pt X (dAJdY) <ff>,. =
j=1

N
[ <f>,.(S P)exp(~ F)dx+Y. M (d3/dy), i =1,....N,
Jj=1

(5.6)
where
M’j: <f£>P*— <f>,. <J;>P*

(5.7)
is a completely positive definite matrix ( matrix of corre-
lation of linearly independent functions f, = fi(x), i=1,..,
N).
Finally from (5.1) and (5.6) we obtain a system of non au-
tonomous ordinary differential equations for /ll.(t), i=1,..,
N in the followig form

3. M) = (1S, (P exp(~ F) (/= </>,.)

(S P) exp(—F"))dx, i =1,...,N,
(5.8)

where

1, = In([Pexp(~ 3. if; d).

(5.9)
The equation (5.9) follows from the normalisation condi
tion [P*(x,7) dx = [P (x,H)exp(— F")dx = 1.

A domain A of the above equations is a set of such ele-
ments 4 =(4,...,4,) for which all integrals in (5.8) and (5.9)
exist. One can check that 4 =(0, ...,0) =0 is a stationary po-
int for the system (5.8) and in this case P*(x,) = P,(x,1).

The system (5.8) will be called completely stable, when
its every solution 4(2) =(4,(1),...,A,(t)) may be extended for
any time ¢ > ¢, (¢, is an initial time) and /im A(2) = 0.

t—wo
We may formulate two important properties of solutions of
the system (5.8).

Property L. If A(t) = (A,(1),....A(1)) is a solution of the sys-
tem (5.8) such that A(t) € A (1, is an initial time) and A(t)
may be extended into domain A for any time t > t,

then lim A(t) = 0, i.e. A(t) tends to

t —0

the stationary solution of the system (5.8).

Let A(?) be a solution of (5.8) which may be extended into
domain A for any time ¢ > #,. For such solution according
to (4.8) and (3.14) we have

N
lim A, (1) + % lim A (t)f\(x) = 0.
t—w0 i=1 t—ow

(5.10)
Because functions fl.(x), i =1,..., N are linearly indepen-
dent ( together with f/(x) = 1), from (5.10) one gets
limi(t) = 0, for i =0,1,..., N.
t —

(5.11)
Property Il. In the case when A = E" ( E"is the n-
dimensional Euclidean space), then the system ( 5.8) is
completely stable.
In the case when A # E", the system(5.8) is completely
stable if every vector d A/dt, which components are given
by (5.8) for every point 4 belonging to the boundary of the
set N\, is directed into A.
The system (5.8) has the linear approximation in the fol-
lowing form

—3 MO fd) = (1S, (P,exp(~ F) ~(f~ </,

(S, P)exp(—F))dx,i=1,.., N,

(5.12)
where
1\41:]'(0) - <f;~]§>Po N <ﬁ>Po <~];>Po :

(5.13)
Equations (5.12) constitute a system of linear, but in gene-
ral non autonomous, ordinary differential equations.
One can notice that the function
V(A1) = K(P'(x,t),P,(x,1) = IP*(x, 1) In(P*(x,t)/
P,(x,t)dx=>0

(5.14)
is a Liapunov function for (5.8) [9].
Now we may formulate an approximation algorithm sup-
ported on minimizing the Kullback-Leibler information
divergence in continuous systems. Approximation algori-
thm consists of the following steps:
Step 1. We check if a continuous system described by the
system operator S, is a Kullback system i.e. if operator S,
satisfy the inequality (2.5).
Step 2. We choose convenient set of functions f, = f(x), i
= ],..., N for our considerations.
Step 3. We calculate integrals on the right side of the ac-
companied evolution equations (5.8) using equation (5.9).
Step 4. We solve the accompanied evolution equations
(5.8), (5.9) and obtain coefficients A(?), i = 0,1,..., N.
Step 5. The coefficients /Ii(t), i =01,.., N are used in
(3.13), which is the Kullback-Leibler solution.
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V1. CoNSLUSIONS

We have obtained the important result for the Kullback-
Leibler divergence, that the time derivatives of the Kull-
back-Leibler divergence for approximate solutions P*(x;)
and for exact solutions P = P(x,t) have the same shape.
As a result, in the Kullback-Leibler systems the inequality
dK/dt <0 is satisfied for exact and approximate solutions.
In consequence, the approximate solutions P’(x,z) have
the same asymptotic behaviour as the exact solutions P =
P(x,?) i.e. they tend to the same solution P,.

We have created an approximation algorithm supported on
minimizing the Kullback-Leibler information divergence
in the Kullback-Leibler systems. Practical application of
the proposed approach requires knowledge of the probabi-
lity density P, . If a Kullback system possesses a stationary
solution, this solution may be chosen as P [4]. In the case
when the Kullback system possesses a time-dependent pe-
riodic solution [6], this periodic solution is an attractor and
may be chosen as P,. Let us notice that the approximation
algorithm presented in this paper not only gives a certain
approximate scheme of solving the Kullback system but
also generalizes the information gain minimizing appro-
ach for the Fokker-Planck equation, even with time depen-
dent drift and diffusion coefficients[6].

Problems analogical to the ones presented in this paper
were investigated by the author in the case of discrete sys-
tems and will be published in a separate paper.

APPENDIX

Here we will show that the system described by the Fok-
ker-Planck Equation (F.P.E.) is a Kullback system.

We take for our consideration the n-dimensional F.P.E.
with time-dependent drift and diffusion coefficients for the
probability density function P(x,?) of the continuous ran-
dom variable x = (x,, ..., x ) in the following form[8]

S 8(D,(8P/ox))/ox,,

ij=1

OP/ot =~y O(v,P)/ox, +
i=1

(A.1)
were v, = v (x,t)isadrift vectorand D, = D (x,?) is a symme-
tric and completely positive definite diffusion matrix[1,7].
The system operator S, in the case of F.P.E.will be denoted
as S "% and is defined below

SFEP ==Y 8(v,P)/ox, + 3. &(D,(0P/ex))/ex, .
i=1 ij=1

(A.2)
We will check that the formula (2.4) is satisfied for the sys-
tem operator S™* i.e.
f((StFPE P)In(P/P) — (S P )(P/P))dx <0, ( =0
only if P=P,).

(A.3)
Substituting (A.2) on the left side of (A.3) one obtains

lancprp,) (—i o(v, P)/ex, +i8(DU(6P/8xj))/6x) — P/
P (=Y. 0(v. P )/ox, +3. a(bﬁ(ap/ax/)/ax))dx

—~ I3 In(P/P)o(v, P)/ex,dx+ ] 3. In(P/

ij=1

P,)a(D,(0P/ox))/ox,dx + [ (P/P,) (v, P)/ox,dx

~ 3 (P/P)o(D, (0P fox)) fox,dx = | _"za(zn(P/

ij=1

P ))/ox (v P)dx — | So(In(P/P,))/éx, (D, (0P/ox))dx

ij=1

~ [ SO(P/P /o, (v,P,)dx + [ So(P/

ij=1

P )/ox(D,(0P /ox))dx = | i(P/P)@(P/PO)/axi(vi P)dx

— IS a(n(P/P,))/ox, (D, (3((P/P )P )/ox))dx | _z"a(P/

ij=1

P,)/éx, (v, P )dx

+ "za(P/Po)/axi(Dy(aP/axj) )dx = — [ Sa(in(p/

ij=1

P ))/éx,(D,(0(P/P,)/ox P+ (P/P, 0P /ox )dx

ij=1

+ [ Y0(P/P,)/ox(D,(0P Jox))dx =~ | . (P [P)O(P/

ij=1

P )/ox,(D,(8(P/P,)/éx P +(P/P )OP /ox )dx

ij=1

+ [ YO(P/P)/ox(D,(0P Jox))dx =~ | S (P /P)O(P/

ij=1 ij=1

P )/ox,D,(8(P/P,)/x,(P /P) Pdx

~['soep/p,)/exD, 0P fox )ax + [y orP/

ij=1 ij=1

P )/ox(D,(0P /Ox ))dx =

—| 2. Oln(P/P,)/0x, Dl.ialn (P/PO)/aij dx.

ij=1 ‘

(A4)

Let us notice, in connection with the above calculations
in (A.4), that adjoint manipulation associated with spatial
operations on probability density function P(x,?) is possi-
ble only if P(x,?) is rapidly decreasing for | x | — o (the
natural boundary condition according to Graham [1]).
Because D, is a completely positive definite matrix, the
last formula in (A.4) satisfies the following
inequality

~ 3. dln(P/P,)/ox, D Oln(P/P,)/ox, Pdx < 0, (=0

ij=1
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only if P=P).

(A.S5)
From (A.5), (A.4) it follows that inequality (A.3) is ful-
filled for the system operator S/, so it is the Kullback
system operator. Hence our earlier general considerations
connected to the Kullback systems may be applied for the
systems described by F.P.E..
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