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1. Introduction

In this paper we present several modifications of existing 
rootfinding algorithms. They may be used for solving se-
veral kinds od problems such as finding singular values of 
matrices, eigenvalues of certain matrices, roots of some 
orthogonal polynomials.
The algorithms that we consider here are the Weierstrass 
method (see e.g. [16, 14, 11]), the Aberth method ([1]) and 
the simultaneous version of the Bairstow method ([10, 
13]).
We will start by presenting the details of these problems. 
Then we will describe the algorithms and their modifica-
tions. These modifications can be applied to every simul-
taneous rootfinding algorithm.

2. Singular values and rootfinding methods

In this section we will describe how rootfinding methods 
can be used to compute the singular values of any matrix.

Let  have the singular values                       Re-
call that they are the square roots of the eigenvalues of the 
matrix        . However, methods based on forming 
and computing its eigenvalues may lead to significant loss 
of accuracy, especially in small singular values.
On the contrary, the problem of computing singular val-
ues of bidiagonal matrices is very well conditioned in the 
sense of the relative error. By a bidiagonal matrix we mean 
a matrix with nonzero entries located only on the main 
diagonal and on the superdiagonal. Demmel and Kahan 
[4] (see also [2, p.90]) proved that all singular values of 
bidiagonal matrices may be computed with high relative 
accuracy.
The method we propose here is a variation of the approach 
first outlined by Golub and Kahan in [7]. They used the 
fact that any matrix  can be decomposed as 
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where Q  and P  are orthogonal, which guarantees that the 
singular values of A  and B  are the same. This reduction 
can be obtained by the Lanczos process or using a finite 
sequence of Householder transformations, for details see 
e.g. [2, pp.81-82]. The latter algorithm is backward stable 
in the following sense. It can be shown that the computed 
B~  is the exact result obtained for a matrix EA+ , where	
								                ,

where        is machine precision and c  is a constant of
order unity, see [2, p.83].
Once we have B , we form a symmetric matrix 
			   					   
	  	 ,			 

			   			   (1)
whose eigen values are , nk ,1,2,=  . Permuting 
rows and columns of C  leads to a symmetric tridiagonal 
matrix with zeros on the main diagonal, 

									                 ,

											           (2)
where P  is a permutation matrix. Since T  and C  have 
the same spectrum, computation of the singular values of 
A  is equivalent to computation of the eigenvalues of T. 
As T  is tridiagonal, det 	              	can be  evaluated easily
and in a stable way, so methods that compute eigenvalues 
as roots of the characteristic polynomial find a reasonabl 
applica tion here.
To compute the spectrum of T , Golub and Kahan used a 
method based on Sturm sequences, and some variations 
of QR algorithm, applied to the bidiagonal matrix. We 
will consider here simultaneous rootfinding methods, the 
Weierstrass, Aberth and Bairstow methods.

3. Simultaneous rootfinding methods

Let  be a polynomial 

	 	 ,
											           (3)
where,				   for k = 0,1,...,m.
E. Durand [6] and I. O. Kerner [11] independently have 
proposed an iterative method for finding all zeros of )(zf  
simultaneously. It was a rediscovery of a scheme present-
ed by K. Weierstrass in [16]. This is the reason why this 
method appears in literature as either the Durand-Kerner 
method or the Weierstrass method.
Assume that  are simple roots of  
and    are distinct initial approxima-
tions to these zeros. The st iterate of the Weierstrass 

method is computed according to the formula 	

		
		
		

											           (4)
for i = 1,2,...,m.
Observe that 
	

and 
	

for  close to . Hence the Weierstrass method can 
be interpreted as Newton's method for every root. Hence it 
should converge quadratically, provided that the roots are 
simple. Indeed, it is so, which was first shown by Kerner.
The Aberth method (introduced in [1]) uses the following 
formula to compute st approximation 
	

for i = 1,2,....,m...
It is a simultaneous version of the Halley method. Analo-
gously, for simple roots, its order of convergence is 3. The 
argument was given by O. Aberth in [1].
To modify these methods to suit better computing singular 
values we take into account the fact that the eigenvalues 
of T  are , nk ,1,2,=  , i.e. they are opposite num-
bers. Hence we can compute the consecutive approxima-
tions of only half of them. The classical Weierstrass for-
mula (4) may be modified to obtain 

												          
											           (5)
for i = 1,2,...,n.									      
The complexity of the classical and modified algorithms 
counted as a number of complex multiplications is 22n  
and 24n , respectively. We omitted here the cost of com-
puting .
Similar modification of the classical Aberth formula leads 
to the following iteration
 	

											           (6)
	for i = 1,2,...,n. 								         
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The complexity of the classical and modified methods is 
respectively  and , plus the cost of comput-
ing  and .
In the Bairstow method we seek the quadratic factors 

 of the polynomial . In our problems 
we have only opposite roots, so we may assume that all 
factors are of the form . We will use this assump-
tion from now on and the algorithms will be presented 
only in this setting.
Let  be the approximation of the quadratic 
factor of . 
Then 
	
and 
	
The Bairstow method can be written as 
	

for k = 0,1,... 
Here we assumed that the initial and computed approxi-
mations of the coefficient of the middle term of all qua-
dratic factors are zero.
To avoid deflation this process may be changed to com-
pute simultaneously consecutive approximations of all 
quadratic factors of . This approach was proposed by 
D. C. Handscomb in [10], then further developed by W. S. 
Luk in [13].
Here we will present a simpler version of their algorithm, 
which we modified to suit better the problem we are inter-
ested in, i.e. polynomials with opposite roots.
First we need a method of suppression of computed qua-
dratic factors of . Assume that a factor  has al-
ready been found. Then we want to carry on the Bairstow 
method on the deflated polynomial  
without explicitly constructing . It is possible, because 
we only need the coefficients of the linear reminders of 

 and , where 
	
and 
	
D. C. Handscomb (see [10]) found that the relation between 

 and , is the following 
	
	
	
	
	

We stated these formulae in simplified form, suited for our 
problem. They are much simpler than original ones (com-
pare [13] or [10]).
The simultaneous version of the Bairstow method works 
as follows. Choose  the initial ap-
proximations to the coefficients q  of the quadratic fac-
tors. Then apply one step of the Bairstow method to each 
of them, treating all other as computed factors and per-

form suppression as described above.
The whole algorithm:

Choose initial approximations 
for  until convergence do
   for  do
               find  using 
      for do
           

					   
   
  
   
	    	end
 	        	find  by the Bairstow method
 		  end
	    end

4. Zeros of orthogonal polynomials

The above modification can also be used for computing 
the zeros of certain orthogonal polynomials.
Any set of orthogonal polynomials  
					         	satisfies a three term recurrence 
relation 
	 	

											           (7)
with  where 
It can be shown (see [17] and [9]), that the zeros of  
are the eigenvalues of 
	

where 
	

Zeros of many orthogonal polynomials are opposite num-
bers, hence our modifications of rootfinding methods can 
be applied here.

5. Numerical tests

This paragraph contains the results of the tests performed 
in Matlab, with machine precision 
We implemented the modified Weierstrass method and 
compared the results it gave either with the exact solution 
or with the results given by the built-in Matlab function 
''svd''. In all tests we computed the componentwise relative 
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Figure  1: The logarithm of the relative error (8) of the Weierstrass 

method for Clement matrices.
  
We can see that the results are very satisfactory. However, 
the situation can change significantly if we change initial 
approximations. Figure 2 presents the results for analo-
gous tests with different initial guess, namely equally dis-
tributed points from the interval  
and numbers opposite to them.
We tried many different starting approximations and it 
turned out that very often the method breaks down for 
some . The values of  for which the method does not 
work strongly depend on the initial guess. Moreover, large 
matrices also present a problem, for  it is hard to 
find initial guess for which the method works.

Figure  2: The logarithm of the relative error (8) of the Weierstrass 
method for Clement matrices.

These breakdowns are mainly due to the overflow, so some 
method of scaling may help to improve the behaviour of 
this algorithm.
On the other hand, the method is very fast, as predicted. 
The number of iterations required to obtain desired accu-
racy grows slowly with , for  in our test it was 

error 
	 										        
											         
											           (8)
where  and ,  are the respective ex-
act (or given by ''svd'') and computed singular values of a 
matrix 
The situation where we know the exact solution is quite 
rare. However, there is one class of matrices that is very 
useful for tests, namely the Clement matrices, see [3]. 
These are matrices of the form 
	

	

	

											           (9)
where  for  The spectrum 
of  consists of opposite integer numbers and possibly 
zero, if  is odd, i.e.					            		      or

For our tests it is convenient to assume that  is a ma-
trix of the form (2), obtained (via bidiagonalization, form-
ing a matrix  (see (1)) and permuting its rows and col-
umns), from some unknown matrix , whose 
singular values are the eigenvalues of . Note that 

 and, as  
is symmetric, its condition number is equal to  so 

 is well-conditioned if the dimension is not too big.
Figure 1 presents the results of tests of the Weierstrass 
method for Clement matrices. The value of the logarithm 
of the relative error (8) at the final step is plotted against 
the half of the dimension of the Clement matrix. As initial 
approximations we took equally distributed points from 
the interval     						          and numbers op-
posite tothem. As a termination criterion we used Gill's 
criterion 

	 	
											           (10)
 where  is a vector of approximations at the th step, 

 is a tolerance and  is a machine precision. In all 
tests with Clement matrices 
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8.
The same tests we performed for the Aberth method. 
The results and conclusions are similar. This method is 
also very sensitive to the choice of initial guess. And, if 
it works, it is usually slightly faster than the Weierstrass 
method, which is not surprising, as its order of conver-
gence is also greater.
In the case of the Bairstow method the situation is dif-
ferent. The method works fine and is not too sensitive for 
the choice of initial guess. However, for larger matrices it 
converges very slowly or not at all, which shows already 
for 40×40 matrices. This may be partially caused by the 
fact, that the inner loop in the algorithm is performed for 
all , i.e. all factors are suppressed, ex-
cept the current updated one. If, instead of all, we suppress 
only a couple of factors around the current one, it may in 
some cases improve the convergence.
The next group of tests was performed on matrices of the 
form 
	

										         			   		

			   			  (11)
This time we computed the singular values of  by form-
ing an appropriate matrix  (see (2)) and, as the 
exact results are not known, we compared the results given 
by the modified Weierstrass algorithm with the ones given 
by the Matlab function ''svd''.
For larger values of  one of the singular values of  is sig-
nificantly smaller than the others, which results in loss of 
accuracy. This is already visible for  Hence itera-
tive refinement is recommended, for example by means of 
Newton's method applied to the smallest singular value.
The Tables 1, 2 and 3 present the results for matrices of the 
above form (11) for different values of the parameter , re-
spectively, for the modified Weierstrass, Aberth and Bair-
stow methods. As  increases, the condition number grows 
and results become less accurate. The last two columns 
contain the values of the relative componentwise error 
	

and the absolute componentwise error 
	

where  and ,  are the singular 
values computed by the ''svd'' function and the Weierstrass 
or the Aberth algorithm, respectively. The tolerance  
(see (10)) in these tests was  the initial approxima-
tions were chosen as before.

Table 1: Results for the modified Weierstrass method for the matrix 
(11) for different values of .

In Table 2 we see that the Aberth method did not work for 
 This is only for this particular initial guess. For 

some initial approximations this method worked well: the 
results were very close to these given by the function ''svd'' 
(error of order ). The problem is to find such initial 
guess, as it very strongly depends on the matrix. We were 
not able to find a general formula that would work for a 
family of matrices.

Table 2: Results for the modified Aberth method for the matrix (11) 
for different values of .

Table 3: Results for the modified Bairstow method for the matrix (11) 
for different values of .

In the test for  in Table 3 errors of the results 
given by the Bairstow method were the same for any num-
ber of iterations between 9 and 1000.
Next group of tests is involves orthogonal polynomials. 
These tests were performed for Chebyshev polynomials, 
whose zeros are known, which makes it possible to verify 
the results.
Table 4 presents results for the Chebyshev polynomials. 
The first column contains the degree of the polynomial, 
the second and the third contain the relative error and 
number of iterations for the Weierstrass method, the last 
two columns present the same data for the Aberth meth-
od. The condition numbers of corresponding matrices are 
quite modest, they do not exceed 100. We used analogous 
initial approximations as in the case of Clement matrices, 
and the same stopping criterion with the tolerance .
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Table 4: The relative errors of the modified Weierstrass (W) and 
Aberth (A) methods for Chebyshev polynomials.  

6. Conclusions

In this paper we presented certain modifications of classi-
cal rootfinding algorithms. These modified methods may 
be used for example for computing the singular values of 
matrices or roots of orthogonal polynomials.
Numerical tests performed in Matlab show that these al-
gorithms have good numerical properties, if the zeros are 
well separated and the initial guess is sufficiently close to 
the exact solution. Therefore it can be recommended as a 
method of choice, especially if combined with some tech-
niques of iterative refinement. Moreover, in all algorithms, 
the classical versions and the modified ones, some parts 
are computed independently. Hence parallel implementa-
tion may be a good choice here.
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